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ATTACHMENT B

DESIRED CONDITIONS IN PONDEROSA PINE FORESTS: THE SUPPORTING SCIENCE

This document summarizes the scientific literature supporting the key compositional and structural
aspects of the Desired Conditions in southwestern ponderosa pine forests. It outlines the work
completed to date on a manuscript describing the development and science basis for the Desired
Conditions. This summary focuses on the ponderosa pine forest type because (1) it is the most common
non-woodland forest type in the Southwest, (2) it has been and is the focus of most vegetation
management activities in the Southwest, and (3) it is the primary focus of the October 2011 Desired
Conditions Workshop. There is a large body of literature on the ecology and natural range of variability
of ponderosa pine forests. The key elements and functions of the Desired Conditions of a forest type
are:

species composition, overstory and understory,

its characteristic tree density, spatial distribution, age composition,
forest openings and the grass/forb/shrub vegetation matrix,
habitats, biodiversity, and food webs,

sustainability and resilience,

fire frequency, behavior, and effects,

hydrologic processes,

visual attributes.

The Desired Conditions for ponderosa pine forests incorporated information on the ecology of
the overstory and understory vegetation comprising this type as well as information on its historic or
natural range of variability in the composition and structure of vegetation. The natural range of
variation comes from 19" century descriptions of forest conditions by early explorers (Beale 1858,
Wheeler 1875, Dutton 1882, Leopold 1924) and early scientists (Lieberg et al. 1904, Plummer 1904,
Woolsey 1911, Pearson 1950), from tree ring, dendrochronological, and restoration studies (Fritts and
Swetnam 1989, Covington and Moore 1994, Swetnam and Baisan 1996, Covington et al. 1997),
vegetation classifications (Daubenmire 1968), forest vegetation simulations (cites), natural area and old
growth studies (White 1985), fire histories (Morgan et al. 2001), and wildland fuel management
strategies (e.g., Haig et al. 1941, Pearson 1950, Fulé et al. 1997, Reinhardt and Crookston 2003, Graham
et al. 2004).

All southwestern forests and woodlands are periodically affected by natural disturbances such
as fire, insects, disease, wind, and herbivory. These disturbances have variable effects on forest
vegetation depending on the type, frequency, intensity, and spatial scale of disturbances. The type,
frequency, and intensity of disturbances varied historically among forest and woodland types. A forest
or woodland’s characteristic composition, structure, and landscape pattern, the result of vegetation ,
establishment, growth, and succession, combined with the periodic resetting of these by characteristic
natural disturbances, constitutes a forest or woodland’s natural range of variability. The temporal and
spatial variability in vegetation establishment, growth, and mortality, and the consequences of natural
disturbances in a forest.or woodland define the natural range of variability. Much of the range of
variability stems from fine- to landscape scale heterogeneity in aspect, slope, elevation, and soils that
can lead to topographically different growing conditions and disturbance regimes (Beaty and Taylor
2001, Fulé et al. 2003). The ability of a forest ecosystem to absorb and recover from disturbances _
without drastic alteration of its inherent function is central to the concept of natural range of variability.
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In the southwestern United States, fire is a primary disturbance agent and fire regimes are central to
understanding natural range of variability as it relates to the composition, structure, and pattern in
various forest types (Fulé et al. 2003). A description of fire regimes and ecological characteristics by
forest type is displayed in Table 1.

Ponderosa Pine Forest
Key Characteristic: Species Composition

The Desired Condition is a forest overstory dominated by ponderosa pine, mixed where possible
with pinyon and juniper species, oaks, aspen, or Douglas-fir, and a species-diverse and productive
grass/forb/shrub understory. The ponderosa pine forests considered here are exclusive of the
ponderosa pine-oak forests types, whose desired conditions are treated separately.

" In this type, ponderosa pine is the dominant seral and climax tree species, but depending on
locale may mix with gamble oak, several juniper and pinyon species (DeVelice 1986), quaking aspen,
Douglas-fir, or southwestern white pine. Composition of the grass/forb/shrub understory is typically
diverse in ponderosa pine forests, especially when canopy openings are present (Moir 1966, Naumburg
and Dewald 1999, Laughlin et al. 2006, Abella 2011). Presence of shrubs is variable depending on
habitat type and locale (USDA 1997), but when present may consist of sagebrush (Artemisia spp.),
currant (Ribes_spp.), snowberry (Symphoricarpus_sp.), mahogany (Cercocarpus sp.), rabbitbrush
(Chrysothamnus spp.), saltbrush (Atriplex sp.), morman tea (Ephedra sp. }, manzanita (Arctostaphylos
spp.), ceonothus (Ceonothus spp.), bitterbrush (Purshia spp.), Oregongrape (Mahonia spp.), oak shrub
(Quercus sp.), rose (Rosa spp.), and locust (Robina sp.). While grasses and herbs occur in most
ponderosa pine types, the compOSItlon, abundance (cover), and productivity is variable depending on
soil, aspect, elevation, latitude, moisture, and the presence or absence of tree cover {Moir 1966,
Naumburg and Dewald 1999, Laughlin et al. 2006, Abella 2011). The more common grasses are sedge
(Carex spp.), muhly (Muhlenbergia spp.), muttongrass (Poa sp.), junegrass (Koeleria sp.), bluestem
(Schizachyrium sp. ), ricegrass (Piptochaetium sp.), squirreltail (Elymus sp.), fescue (Festuca spp.), grama
(Boutuloua spp.), needlegrass (Stipa spp.), pine dropseed (Blepharoneuron sp.), threeawn (Aristida sp. ),
bluestem (Andropogon spp.), brome (Bromus spp.), and wheatgrass (Pascopyrum spp.) (UDSA 1997). '
More common forbs are sagewort (Artemisia sp.), geramium (Gerahium spp.), goldenrod (Solidago
spp.), cinquefoil {Potentilla spp.), pussytoes (Antennaria sp.), fleabane (Erigeron sp.), groundsel (Senecio
spp.), brackenfern (Pteridium sp.), vetch (Astragalus spp., Vicia sp.), peavine (Lathyrus.sp.), goldenaster
(Heterothecs spp.), meadowrue (Thalictrum sp.), buckwheat (Eriogonum spp.), and gromwell
(Lithospermum sp.) (USDA 1997). '

Key Characteristic: Tree density and distribution

The vegetation structure in ponderosa pine forests throughout the Southwest has changed
considerably from the natural or historical condition. Tree harvests and livestock grazing, coupled with a
reduction in fire frequency and intensive fire suppression since Euro-American settlement have resulted
in significant increases in tree densities, mostly in the smaller diameter classes, increased densities of
shade-tolerant, less fire resistant tree species (e.g.,Douglas-fir, white fir, juniper), and increased fuel
loads (Parsons and Debenedetti 1979, Moore et al. 2004, Naficy et al. 2010, Scholl and Taylor 2010). For
example, a 1990s re-measurement of tree densities on 15 partially-harvested 2.5-acre plots in
ponderosa pine in Arizona and New Mexico, originally measured by T. S. Woolsey and G. A. Pearson in -
1909-1913, showed that mean trees per acre increased over nine decades by a factor of almost 7; from
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77 to 519 trees per plot (Moore et al. 2004). In many areas, tree species compositions have shifted
towards more shade tolerant and less fire resistant species. Increased tree densities and tree
encroachment.into openings and meadows has resulted in increased shading and a decline in percent
cover, abundance, and diversity of understory grasses, forbs, and shubs (Covington and Moore 1994,
Bogan et al. 1998, Swetnam et al. 1999, Abella 2009). Increased tree densities also altered hydrologic
cycles by lowering total stream flows, peak flows, and base flows (Ffolliott et al. 1989, see Troendle and
King 1985 for effects of tree removal on hydrologic cycles). Increased tree densities and invasion of
ponderosa pine and dry mixed conifer forests by less fire-tolerant tree species has resulted in increased
number, size, and severity of wildfires (Allen 2007).

Historical tree densities on reconstructed plots throughout the Southwest varied depending on
factors such as elevation, aspect, slope, soils, moisture, and a site’s unique history. An example of this
was a reconstruction study involving 53 2.5-acre plots representing nine different ponderosa pine
ecosystem types near Flagstaff, Arizona. Historical-tree densities on these sites varied 19-fold, and
averaged between 2 -40 trees per acre (Abella and Denton 2009). Moore’s et al. (2004) reconstruction
study on their 15 2.5 acre Woolsey plots (discussed above) estimated (based on live tree and cut-stump
BA) a mean density of 40 trees per acre (Moore et al. 2004). On the same Woolsey plots, Sdnchez-
Meador et al. (2010) found that the number of tree groups ranged from 4-11 per acre and ranged in size
from 0.004 ac to 0.06 acre. Other reports of historical tree densities include 22 trees per acre near
Walnut Canyon (Menzel and Covington 1970), 23 trees per acre at Bar-M-Canyon (Covington and Moore
1994), 24 trees per acre on the Gus Pearson Natural Area (GPNA) on the Fort Valley Experimental Forest
(Mast et al. 1999), and 24 trees per acre at Camp Navajo (Fulé et al. 1997). A 1938 forest inventory on
the Long Valley Experimental Forest (central Arizona) showed that 75 trees per acre were present prior
to the cessation of frequent fire (between 1880 and 1900). Woolsey (1911) reported an average of 18
trees per acre (> 4 inches dbh) in northern Arizona in the early 20" century.

Structural characteristics widely reported for historical Southwest ponderosa pine are relatively
open forests with trees typically aggregated in small groups within a grass/forb/shrub matrix (Cooper
1960, White 1985, Pearson 1950, Covington et al. 1997, Abella and Denton 2009). Recent work in
northern Arizona has shown that tree densities across nine different ponderosa pine ecosystems
depended to a large extent on soil type and climatic variables (minimum spring and fall temperatures,
May precipitation) (Abella and Denton 2009). This work also showed that the degree. to which trees
were aggregated into groups was largely explained by ecosystem soil type. Twenty-eight to 74 percent
of all trees were in groups; the remaining trees were scattered individual trees (Abella and Denton
2009). These structural conditions were maintained by frequent low-intensity surface fires that more
often killed small rather than large trees (Dieterich 1980, Weaver 1951, Fiedler et al. 1996; but see
Leirfallon and Keane 2011). Other small-scale disturbances such as insects, disease and others also
shaped this characteristic forest structure. Low intensity fires occurred every 2 to 12 years and
maintained an open canopy structure (Covington et al. 1997, Moir et al. 1997). Typical historical tree
groups ranged from 0.1 to 0.75 acres in size and comprised 2 to 40+ trees per group (White 1985, Fulé
et al. 1993, Covington et al. 1997). The grass/forb/shrub understory and fine fuels (needles, cones,
limbs) from large trees fueled these frequent fires started by lightning and, to an uncertain extent by
Native Americans (Kaye and Swetnam 1999, Allen 2002). Regular fire thinned or eliminated thickets of
small trees, resulting in open, park-like forests (Cooper 1960, Covington et al. 1997, Allen et al. 2002).
Restoration studies on the Fort Valley Experimental Forest near Flagstaff, Arizona, showed an average of
23 trees per acre that were grouped into distinct 0.05- to 0.7-acre groups consisting of 2-40 trees
(Covington et al. 1997). In the White Mountains of Arizona, the average size of tree groups in
ponderosa pine was 1/5" of an acre (Cooper 1961).
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Key characteristic: Forest openings and grass/forb/shrub matrix

A key characteristic of the Desired Conditions for. ponderosa pine are canopy openings that
comprise between 30 and 70 percent (extremes =10 to 80%) of a landscape. These openings lack tree
crown cover and support a desired grass/forb/shrub community. Woolsey (1911) described late 19"
century southwestern ponderosa pine forests as having “...pure park-like stand(s) made up of scattered
groups of from 2 to 20 trees, usually connected by scattering individual . Openings are frequent and vary
in size. Because of the open character of the stand and the fire-resisting bark, often 3 inches thick, the
actual loss in yellow (ponderosa) pine by fire is less than with other more gregarious species.” Others
also described historical ponderosa pine forests as having low tree density, open, savanna-like stands
consisting of groups of pine trees interspersed with grassy or shrubby openings (White 1985). Grass -
openings in southwestern ponderosa pine account for the highest level of plant diversity (Laughlin et al.
2006) and spatial patterns influence genetic diversity (DeWald 2003), growth of trees (Biondi 1996,
Ffolliott et al. 2000), forest dynamics (Youngblood et al 2004, Boyden et al. 2005, Sanchez-Meador et al.
2009), wildlife habitat (Reynolds et al. 1992, Waltz and Covington 2003, Dodd et al. 2006, Wightman and
Germaine 2006), and risk of stand-replacing crown fires (Fulé et al. 2007). Unfortunately, the actual
degree of “openness” has received little measurement; instead, most reconstruction/restoration studies
focused on tree densities and tree aggregation. Although White (1985) did not define how close trees
had to be to constitute a “group” (he appeared to use the absence of 1919 regeneration beneath large
tree crowns to define groups, which consisted of 23 trees), he reported 22 percent of his plot on the
GPNA was under tree groups. Thus, 78 percent of the 18 acre area would likely have been open before
the 1919 regeneration pulse (White 1985). White (1985) reported that 12 percent of the historical trees
on his plot were not in groups of three trees; if he had included single trees and groups of 2 trees, the
percent open would have been less than 78 percent. Covington et al. (1997), also working on the GPNA,
reported that while canopy cover was high within groups of trees, only 19 percent of the surface area of
their Fort Valley study plot was under pine canopy; the balance (81%) represented grassy openings
(Covington et al. 1997). Gill’s et al. (2000) estimate of mean crown radius of mature ponderosa pine of
19.7 feet to estimate the range of total per-acre area under projected crowns, on the 53 study plots of
Abella and Denton (2009), plots with two trees had less than 2 percent under crowns (98% open) and
the 40-tree plot had 28 percent under crowns (72% open). The same approach for the 75 trees present
before the cession of fire (about 1900) on the Long Valley Experiment Forest resulted in about 52
percent of the per acre area under tree crowns (48% open).

Trees in ponderosa pine forests affect soil properties, and species richness, cover, and the
distribution of grass/forb/shrub species. For example, trees affect soil moisture, nutrients, and other
ecosystem components such as microclimates above and below the soil surface (Arnold 1950, Barth
1980, Moir 1966, Parker and Muller 1982, Covington et al. 1997, Scholes and Archer 1997, Abella 2009).
These components and microclimates can affects many plant and animal species and ecological
processes, including biodiversity, trophic interactions, food webs, wildlife, and hydrology:.
Environmental parameters such as light intensity, pH, litter depth, soil depth, percentage of exposed
rock, and percentage of litter cover are directly influenced by the presence or absence of canopy cover
(Evensen et al. 1960). In northern Arizona ponderosa pine-Gamble oak forests, openings had greater
species richness, three to eight times greater plant cover than under tree canopies, and there were no
species more abundant under ponderosa pine trees (Abella 2009). In addition to the importance of
openings, Abella’s {2009) work pointed to the importance of Gamble oak in pine forests. Single oaks
had the high species richness beneath them while oak clumps and thickets provided unique habitat for
several forb species. Clearly, canopy openings need to be re-established and maintained in ponderosa
pine forests if grass/forb/shrub communities are to be diverse, productive, and support plant,
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invertebrate, and vertebrate species that depend on these communities (Kruse et al. 1992, Rosenstock
1998, Ganey et al.- 1992, Reynolds et al. 1992, 2006, Abella 2009).

Key Characteristic: Snags, logs, woody debris
To be coh’npleted
Key Characteristic: Habitats, biodiversity, food webs

Many ecosystem processes influence plant productivity, soil fertility, water availability and
quality, atmospheric chemistry, and other local and global environmental conditions. These ecosystem
processes are controlled by both the diversity and identity of plant, animal, and microbial species native
to an ecosystem. Recent studies suggest that reductions in biodiversity can alter both the magnitude
and stability of ecosystem processes (Naem et al. 1999). As the dominant tree species, ponderosa pine
influences the entire forest ecosystem, affecting understory vegetation, soils, and plant and animal
habitats and communities (Moore et al. 1999). Southwestern ponderosa pine forests are habitat for
over 250 species of vertebrates, many species of plants, invertebrates, and soil organisms (Patton and
Severson 1989, Allen 2002). Native plants and animals are adapted to naturally high levels of
heterogeneity in ponderosa pine ecosystems, and some species are dependent on diverse habitats for
their survival (Reynolds et al. 1992, 2006; Dodd et al. 1998). Current conditions are atypically
homogeneous in composition and structure with reduced plant and animal habitats and lowered
biodiversity. Moving the current forest conditions to the Desired Conditions can affect many of these
plants and animals in various ways (Reynolds et al. 1992, Rieman and Clayton 1997, Oliver et al. 1998,
Reynolds et al. 2006, Abella 2009). Achieving the Desired Conditions restores habitats at the fine-, mid-,
and landscape scales, particularly by increasing diversity and productivity in grass/forb/shrub layers.
Nonetheless, there may be a potential for the Desired Conditions to lower the viability of sensitive and
threatened species through habitat alteration and fragmentation (U.S. Fish and Wildlife Service 1998,
2011, Holthausen et al. 1999). For some of these species, concerns might be ameliorated by developing
site-specific desired conditions for breeding sites, feeding sites, or entire refugia (for changed desired
forest conditions with increasing distance from nest sites see Reynolds et al. 1992). Also, it is worth
noting that breeding sites or entire refugia for species of special concern could be protected from
catastrophic loss by surrounding them with the Desired Conditions, thereby lowering the risk of
complete loss due to forest-killing crown fires. The ponderosa pine Desired Conditions are comprised of
diverse landscapes with groups and patches of variable tree densities, including groups with dense,
closed canopies (interlocking crowns); densely shaded soils beneath tree groups; tree ages young to old;
species-rich and productive grass/forb/shrub communities; dead, deformed, and diseased trees; large’
logs, and woody debris; and old large oaks, aspen, and other important trees. Each of these is a critical
component of the habitat of many native species (Reynolds et al. 1992, Rosenstock 1998, Bennetts et al.
1996, Bull et al. 1997, Dodd et al. 1998).

The habitat diversity components of the ponderosa pine Desired Conditions as described above
can lead to more robust food webs. The importance of forest habitat diversity and robust food webs is
illustrated in efforts to conserve northern goshawk populations in the Southwest (Reynolds et al. 1992,
2006). In the American Southwest, goshawk reproduction output varies extensively year to year and is
strongly associated with the abundance and availability of food; in years when prey numbers are low,
goshawk population reproduction can be a small fraction of reproduction in years when preyis
abundant (Reynolds et al. 2005, Reynolds et al. 2006, Salafsky et al. 2005a, 2007b). Goshawks are prey
generalists that feed on a broad suite of prey; from robins, jays, woodpeckers, doves, and grouse to tree
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squirrels, ground squirrels, rabbits, and hares (Reynolds and Meslow 1982, Squires and Reynolds 1997).
Each goshawk prey species occupies a different habitat; tree squirrels, woodpeckers, and jays primarily
occupy tree habitats while ground squirrels, rabbits, and hares occupy open grass/forb/shrub habitats,
and still others (robins, grouse, doves) use both habitats (reviewed in Reynolds et al. 1992). Annual
population highs and lows of each prey species are not always in phase, a years’ population low in one
or more prey is often compensated by higher numbers in other species (Salafsky et al. 2006). Over a
period of years it becomes clear that because of this compensation, the entire suite of prey -- not any
single prey species -- is important to goshawk reproduction. A forest management strategy that
maximizes the habitats for one or a few prey species is not likely to sustain a goshawk population.
Rather, a strategy that provides habitats of the wide variety of plants and animals in the hawk’s food
web is more likely to succeed (Reynolds et al. 1992). The Desired Conditions in ponderosa pine provide
a wide variety of habitats; densely canopied tree groups with interlocking crowns and limby boles on the
outside, a matrix of grass/forb/shrub vegetation, and old forest structural elements (large snags, logs,
and woody debris). Each of these habitats is critically important for one or more of the goshawk prey
species.

Key Characteristic: Sustainability and Resilience

The compositional and structural changes have resulted in increased vulnerability of current
southwestern ponderosa pine forests to uncharacteristically high disturbance intensities and extents,
particularly from fire and insects (Covington 1993, Moore et al. 1999, Alien 2007, North et al. 2009,
Collins et al: 2011). Greatly increased tree densities due to fire exclusion have negatively affected forest
health by accelerating old tree mortality, facilitating insect outbreaks, diminishing productivity of
understory plants, altering food webs, and increasing fire severity (Covington and Moore 1994, Abella
and Denton 2009). Current conditions are therefore not natural or sustainable (Swetnam et al. 1999).
Current conditions in ponderosa pine are conducive to insect epidemics and stand-replacing wildfires,
which can convert forests to shrublands (Savage and Mast 2005). This highlights the importance of
understanding natural (or reference) conditions when developing Desired Conditions for forest
restoration. Woolsey (1911) described how fire functions to maintain natural range of forest structure,
...“A crown fire in mature timber is almost unheard of, and in a ground firé in the virgin forest young
saplings often escape complete destruction, though with a fair wind and on a steep slope destruction of
seedlings and saplings is often complete...In June 1910, a fire occurred on the Gila, Datil and Apache
National Forests which burned over about 60 square miles. The area burned was steep and rocky, with
an unusual quantity of dry forage. An investigation showed that injury to the yellow (ponderosa) pine
was confined very largely to the reproduction. On the area as a whole, from 40 to 50 percent of the
seedlings were killed.”

Sustaining the Desired Condition mix of plant and animal habitats over space and time requires
the incorporation of the spatial and temporal dynamics of forest vegetation. Vegetation dynamics,
including the-establishment, development, senescence, and its composition, structure, and pattern, can
be estimated and modeled (see Oliver and Larson 1990, Reynolds et al. 1992, Franklin et al. 2002,
Reinhardt and Crookston 2003). An example of the incorporation of dynamics in sustaining the
maximum amount of mature and old trees in southwestern forests was best achieved with about 20% in
seedlings/saplings), 20 % in young forest, 20 % in mid-aged forest, 20 % in mature forest, and 20 % in old
forest (Reynolds et al. 1992). These proportions reflect forest development from cohort establishment
(seedling/saplings) to old forest structure (Figure 1). Based on forest type, these structural stages are
distributed at the fine scale for ponderosa pine, dry mixed conifer, and some pinyon-juniper types, at
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the mid-scale for wet mixed conifer, some spruce-fir, and pinyon-juniper types, and at the landscape-
scale for most spruce-fir types.

The Desired Conditions have a range of metrics (trees/ac, BA, degree of tree aggregation and openness)
that match a site’s capability so that the conditions can be attained and sustained. Knowledge of the
historical forest composition and structure on a site can provide estimates of tree species and densities
that were sustainable through at least several generations of trees (Allen et al. 2002, Abella et al. 2011).
It may not be necessary, or even desirable in some cases, to have desired conditions that are within the
natural range of variability at every site in southwestern forests'and woodlands. However, historical
conditions are more synchronous with the natural disturbance regime to which the forest and woodland
ecosystems are adapted. Social, political and economic factors are much different today than a century
- ago and there are valid considerations for leaving areas of higher or lower tree-density or differing
composition to meet resource management needs. But restoration on some portion of the landscape to
conditions reminiscent of pre-European settlement times would most likely provide for greater
biodiversity, and greater ecosystem productivity, stability, sustainability, and services.
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Table 1. Southwestern forest types and dominant characteristic natural disturbance regimes.

Forest Type Fire Regime “* Fire Type * Forest Seral Species Climax Species
. _ Structure
Ponderosa pine | frequent/ surface uneven-aged, | ponderosa pine ponderosa pine
(and sub-types) | low severity grouped,
2-17 yrs. (regime |) open
Dry Mixed relatively surface uneven-aged, | dominant -ponderosa | fire dis-climax historic
conifer/ frequent/ {common) grouped, pine condition-
frequent fire low-mod severity open shade intolerant
subdominant - species:

(warmer/drier) | 9-22yrs. mixed (rare) | uneven-aged, | aspen and/or oak
(regimel) patched, open | (sub-stand scale dominant — ponderosa
patches) pine;
subdominant - Douglas-
fir, Southwestern white
pine or limber pine
Wet Mixed relatively mixed uneven-aged, | dominant— shade tolerant species,
Conifer/ infrequent/ (common) patched, aspen or Douglas-fir, depending upon plant
infrequent fire mod-high severity closed depending upon plant | association habitat type:
stand- association habitat
{cooler/wetter) | variable, 22-150 replacing even-aged, type : white fir, blue spruce
yrs. (regime Ili, IV) | (rare) closed
Spruce-fir infrequent/ mixed/stand- | even-aged, dominant ~- shade tolerant species,
(mixed, lower mod-high severity | replacing closed aspen or Douglas-fir, depending upon plant
sub-alpine) depending upon plant | association habitat type:
150-400 yrs. association habitat
(regime lll, IV) type Engelmann spruce,
white fir
Spruce-fir infrequent/ stand- even-aged, dominant - shade tolerant species:
(upper sub- high severity replacing closed aspen, Douglas-fir or
alpine) Engelmann spruce, Engelmann spruce and
. 150-400 yrs. depending upon plant | corkbark or sub-alpine
(regime IV, V) association habitat fir co-dominate

type

" Schussman et al. 2006.
2 Historical Range of Variation and State and Transition Modeling of Historic and Cusrent Landscape Conditions for Potential Natural

Vegetation Types of the Southwest. The Nature Conservancy: Southwest Forest Assessment Project. 2006.
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Figure 1. Growth of tree groups.
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